Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338973

RESUMO

Multiple sclerosis (MS) is an autoimmune chronic disease characterized by inflammation and demyelination of the central nervous system (CNS). Despite numerous studies conducted, valid biomarkers enabling a definitive diagnosis of MS are not yet available. The aim of our study was to identify a marker from a blood sample to ease the diagnosis of MS. In this study, since there is evidence connecting the serotonin pathway to MS, we used an ELISA (Enzyme-Linked Immunosorbent Assay) to detect serum MS-specific auto-antibodies (auto-Ab) against the extracellular loop 1 (ECL-1) of the 5-hydroxytryptamine (5-HT) receptor subtype 2A (5-HT2A). We utilized an ELISA format employing poly-D-lysine as a pre-coating agent. The binding of 208 serum samples from controls, both healthy and pathological, and of 104 serum samples from relapsing-remitting MS (RRMS) patients was tested. We observed that the serum-binding activity in control cohort sera, including those with autoimmune and neurological diseases, was ten times lower compared to the RRMS patient cohort (p = 1.2 × 10-47), with a sensitivity and a specificity of 98% and 100%, respectively. These results show that in the serum of patients with MS there are auto-Ab against the serotonin receptor type 2A which can be successfully used in the diagnosis of MS due to their high sensitivity and specificity.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Polilisina , Humanos , Sistema Nervoso Central , Anticorpos , Testes Hematológicos , Biomarcadores
2.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069054

RESUMO

Chlorogenic acid (CGA), a polyphenol found mainly in coffee and tea, exerts antioxidant, anti-inflammatory and anti-apoptotic effects at the gastrointestinal level. However, although CGA is known to cross the blood-brain barrier (BBB), its effects on the CNS are still unknown. Oligodendrocytes (OLs), the myelin-forming cells in the CNS, are the main target in demyelinating neuroinflammatory diseases such as multiple sclerosis (MS). We evaluated the antioxidant, anti-inflammatory and anti-apoptotic roles of CGA in M03-13, an immortalized human OL cell line. We found that CGA reduces intracellular superoxide ions, mitochondrial reactive oxygen species (ROS) and NADPH oxidases (NOXs) /dual oxidase 2 (DUOX2) protein levels. The stimulation of M03-13 cells with TNFα activates the nuclear factor kappa-light-chain-enhancer of activated B cell (NF-kB) pathway, leading to an increase in superoxide ion, NOXs/DUOX2 and phosphorylated extracellular regulated protein kinase (pERK) levels. In addition, tumor necrosis factor alpha (TNF-α) stimulation induces caspase 8 activation and the cleavage of poly-ADP-ribose polymerase (PARP). All these TNFα-induced effects are reversed by CGA. Furthermore, CGA induces a blockade of proliferation, driving cells to differentiation, resulting in increased mRNA levels of myelin basic protein (MBP) and proteolipid protein (PLP), which are major markers of mature OLs. Overall, these data suggest that dietary supplementation with this polyphenol could play an important beneficial role in autoimmune neuroinflammatory diseases such as MS.


Assuntos
Antioxidantes , Ácido Clorogênico , Humanos , Antioxidantes/farmacologia , Ácido Clorogênico/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Superóxidos , Doenças Neuroinflamatórias , Oxidases Duais , Anti-Inflamatórios/farmacologia , Polifenóis/farmacologia , Oligodendroglia
3.
Antioxidants (Basel) ; 12(9)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37760050

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a progressive motor neurodegenerative disease. Cell damage in ALS is the result of many different, largely unknown, pathogenetic mechanisms. Astrocytes and microglial cells play a critical role also for their ability to enhance a deranged inflammatory response. Excitotoxicity, due to excessive glutamate levels and increased intracellular Ca2+ concentration, has also been proposed to play a key role in ALS pathogenesis/progression. Reactive Oxygen Species (ROS) behave as key second messengers for multiple receptor/ligand interactions. ROS-dependent regulatory networks are usually mediated by peroxides. Superoxide Dismutase 1 (SOD1) physiologically mediates intracellular peroxide generation. About 10% of ALS subjects show a familial disease associated with different gain-of-function SOD1 mutations. The occurrence of sporadic ALS, not clearly associated with SOD1 defects, has been also described. SOD1-dependent pathways have been involved in neuron functional network as well as in immune-response regulation. Both, neuron depolarization and antigen-dependent T-cell activation mediate SOD1 exocytosis, inducing increased interaction of the enzyme with a complex molecular network involved in the regulation of neuron functional activity and immune response. Here, alteration of SOD1-dependent pathways mediating increased intracellular Ca2+ levels, altered mitochondria functions and defective inflammatory process regulation have been proposed to be relevant for ALS pathogenesis/progression.

4.
Int J Mol Sci ; 24(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37108412

RESUMO

Multiple sclerosis (MS) is a multifactorial, immune-mediated disease caused by complex gene-environment interactions. Dietary factors modulating the inflammatory status through the control of the metabolic and inflammatory pathways and the composition of commensal gut microbiota, are among the main environmental factors involved in the pathogenesis of MS. There is no etiological therapy for MS and the drugs currently used, often accompanied by major side effects, are represented by immunomodulatory substances capable of modifying the course of the disease. For this reason, nowadays, more attention is paid to alternative therapies with natural substances with anti-inflammatory and antioxidant effects, as adjuvants of classical therapies. Among natural substances with beneficial effects on human health, polyphenols are assuming an increasing interest due to their powerful antioxidant, anti-inflammatory, and neuroprotective effects. Beneficial properties of polyphenols on the CNS are achieved through direct effects depending on their ability to cross the blood-brain barrier and indirect effects exerted in part via interaction with the microbiota. The aim of this review is to examine the literature about the molecular mechanism underlying the protective effects of polyphenols in MS achieved by experiments conducted in vitro and in animal models of the disease. Significant data have been accumulated for resveratrol, curcumin, luteolin, quercetin, and hydroxytyrosol, and therefore we will focus on the results obtained with these polyphenols. Clinical evidence for the use of polyphenols as adjuvant therapy in MS is restricted to a smaller number of substances, mainly curcumin and epigallocatechin gallate. In the last part of the review, a clinical trial studying the effects of these polyphenols in MS patients will also be revised.


Assuntos
Curcumina , Microbiota , Esclerose Múltipla , Animais , Humanos , Curcumina/farmacologia , Esclerose Múltipla/tratamento farmacológico , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Antioxidantes/farmacologia , Anti-Inflamatórios
5.
Antioxidants (Basel) ; 10(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34943042

RESUMO

Reactive oxygen species (ROS) participate in the T-cell activation processes. ROS-dependent regulatory networks are usually mediated by peroxides, which are more stable and able to freely migrate inside cells. Superoxide dismutase (SOD)-1 represents the major physiological intracellular source of peroxides. We found that antigen-dependent activation represents a triggering element for SOD-1 production and secretion by human T lymphocytes. A deranged T-cell proinflammatory response characterizes the pathogenesis of multiple sclerosis (MS). We previously observed a decreased SOD-1 intracellular content in leukocytes of MS individuals at diagnosis, with increasing amounts of such enzyme after interferon (IFN)-b 1b treatment. Here, we analyzed in depth SOD-1 intracellular content in T cells in a cohort of MS individuals undergoing immune-modulating treatment. Higher amounts of the enzyme were associated with increased availability of regulatory T cells (Treg) preferentially expressing Foxp3-exon 2 (Foxp3-E2), as described for effective Treg. In vitro administration of recombinant human SOD-1 to activated T cells, significantly increased their IL-17 production, while SOD-1 molecules lacking dismutase activity were unable to interfere with cytokine production by activated T cells in vitro. Furthermore, hydrogen peroxide addition was observed to mimic, in vitro, the SOD-1 effect on IL-17 production. These data add SOD-1 to the molecules involved in the molecular pathways contributing to re-shaping the T-cell cytokine profile and Treg differentiation.

6.
Biomolecules ; 11(12)2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34944506

RESUMO

Renin-angiotensin systems produce angiotensin II (Ang II) and angiotensin 1-7 (Ang 1-7), which are able to induce opposite effects on circulation. This study in vivo assessed the effects induced by Ang II or Ang 1-7 on rat pial microcirculation during hypoperfusion-reperfusion, clarifying the mechanisms causing the imbalance between Ang II and Ang 1-7. The fluorescence microscopy was used to quantify the microvascular parameters. Hypoperfusion and reperfusion caused vasoconstriction, disruption of blood-brain barrier, reduction of capillary perfusion and an increase in reactive oxygen species production. Rats treated with Ang II showed exacerbated microvascular damage with stronger vasoconstriction compared to hypoperfused rats, a further increase in leakage, higher decrease in capillary perfusion and marker oxidative stress. Candesartan cilexetil (specific Ang II type 1 receptor (AT1R) antagonist) administration prior to Ang II prevented the effects induced by Ang II, blunting the hypoperfusion-reperfusion injury. Ang 1-7 or ACE2 activator administration, preserved the pial microcirculation from hypoperfusion-reperfusion damage. These effects of Ang 1-7 were blunted by a Mas (Mas oncogene-encoded protein) receptor antagonist, while Ang II type 2 receptor antagonists did not affect Ang 1-7-induced changes. In conclusion, Ang II and Ang 1-7 triggered different mechanisms through AT1R or MAS receptors able to affect cerebral microvascular injury.


Assuntos
Angiotensina II/administração & dosagem , Angiotensina I/administração & dosagem , Benzimidazóis/administração & dosagem , Compostos de Bifenilo/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Pia-Máter/irrigação sanguínea , Traumatismo por Reperfusão/metabolismo , Tetrazóis/administração & dosagem , Angiotensina I/efeitos adversos , Angiotensina II/efeitos adversos , Animais , Benzimidazóis/farmacologia , Compostos de Bifenilo/farmacologia , Feminino , Masculino , Microcirculação/efeitos dos fármacos , Microscopia de Fluorescência , Fragmentos de Peptídeos/efeitos adversos , Pia-Máter/efeitos dos fármacos , Pia-Máter/metabolismo , Proto-Oncogene Mas/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Tetrazóis/farmacologia
8.
Front Physiol ; 12: 653985, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054572

RESUMO

The renin angiotensin system and the cholinergic anti-inflammatory pathway have been recently shown to modulate lung inflammation in patients with COVID-19. We will show how studies performed on this disease are starting to provide evidence that these two anti-inflammatory systems may functionally interact with each other, a mechanism that could have a more general physiological relevance than only COVID-19 infection.

9.
Int J Mol Sci ; 22(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807720

RESUMO

Inside the adult CNS, oligodendrocyte progenitor cells (OPCS) are able to proliferate, migrate and differentiate into mature oligodendrocytes (OLs) which are responsible for the production of myelin sheet and energy supply for neurons. Moreover, in demyelinating diseases, OPCs are recruited to the lesion areas where they undergo differentiation and myelin synthesis. Serotonin (5-hydroxytryptamine, 5-HT) is involved in OLs' development and myelination, but so far the molecular mechanisms involved or the effects of 5-HT on mitochondria function have not yet been well documented. Our data show that 5-HT inhibits migration and proliferation committing cells toward differentiation in an immortalized human oligodendrocyte precursor cell line, M03-13. Migration blockage is mediated by reactive oxygen species (ROS) generation since antioxidants, such as Vit C and Cu-Zn superoxide dismutase, prevent the inhibitory effects of 5-HT on cell migration. 5-HT inhibits OPC migration and proliferation and increases OL phenotypic markers myelin basic protein (MBP) and Olig-2 via protein kinase C (PKC) activation since the inhibitor of PKC, bis-indolyl-maleimide (BIM), counteracts 5-HT effects. NOX inhibitors as well, reverse the effects of 5-HT, indicating that 5-HT influences the maturation process of OPCs by NOX-dependent ROS production. Finally, 5-HT increases mitochondria function and antioxidant activity. The identification of the molecular mechanisms underlying the effects of 5-HT on maturation and energy metabolism of OPCs could pave the way for the development of new treatments for autoimmune demyelinating diseases such as Multiple Sclerosis where oligodendrocytes are the primary target of immune attack.


Assuntos
Mitocôndrias/metabolismo , Oligodendroglia/metabolismo , Serotonina/farmacologia , Células-Tronco/metabolismo , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Proteína Básica da Mielina/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
10.
Int J Mol Sci ; 21(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096672

RESUMO

A common metabolic condition for living organisms is starvation/fasting, a state that could play systemic-beneficial roles. Complex adaptive responses are activated during fasting to help the organism to maintain energy homeostasis and avoid nutrient stress. Metabolic rearrangements during fasting cause mild oxidative stress in skeletal muscle. The nuclear factor erythroid 2-related factor 2 (Nrf2) controls adaptive responses and remains the major regulator of quenching mechanisms underlying different types of stress. Here, we demonstrate a positive role of fasting as a protective mechanism against oxidative stress in skeletal muscle. In particular, by using in vivo and in vitro models of fasting, we found that typical Nrf2-dependent genes, including those controlling iron (e.g., Ho-1) and glutathione (GSH) metabolism (e.g., Gcl, Gsr) are induced along with increased levels of the glutathione peroxidase 4 (Gpx4), a GSH-dependent antioxidant enzyme. These events are associated with a significant reduction in malondialdehyde, a well-known by-product of lipid peroxidation. Our results suggest that fasting could be a valuable approach to boost the adaptive anti-oxidant responses in skeletal muscle.


Assuntos
Antioxidantes/metabolismo , Jejum/fisiologia , Músculo Esquelético/fisiologia , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Regulação da Expressão Gênica , Glutationa/metabolismo , Peroxidação de Lipídeos/fisiologia , Masculino , Malondialdeído/metabolismo , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo
11.
Int J Mol Sci ; 21(18)2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32927603

RESUMO

Energy metabolism and redox state are strictly linked; energy metabolism is a source of reactive oxygen species (ROS) that, in turn, regulate the flux of metabolic pathways. Moreover, to assure redox homeostasis, metabolic pathways and antioxidant systems are often coordinately regulated. Several findings show that superoxide dismutase 1 (SOD1) enzyme has effects that go beyond its superoxide dismutase activity and that its functions are not limited to the intracellular compartment. Indeed, SOD1 is secreted through unconventional secretory pathways, carries out paracrine functions and circulates in the blood bound to lipoproteins. Striking experimental evidence links SOD1 to the redox regulation of metabolism. Important clues are provided by the systemic effects on energy metabolism observed in mutant SOD1-mediated amyotrophic lateral sclerosis (ALS). The purpose of this review is to analyze in detail the involvement of SOD1 in redox regulation of metabolism, nutrient sensing, cholesterol metabolism and regulation of mitochondrial respiration. The scientific literature on the relationship between ALS, mutated SOD1 and metabolism will also be explored, in order to highlight the metabolic functions of SOD1 whose biological role still presents numerous unexplored aspects that deserve further investigation.


Assuntos
Metabolismo Energético , Superóxido Dismutase-1/metabolismo , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Animais , Antioxidantes/metabolismo , Respiração Celular , Colesterol/metabolismo , Dieta , Humanos , Ativação Linfocitária , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1/genética , Serina-Treonina Quinases TOR/metabolismo
12.
Nutrition ; 78: 110815, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32480255

RESUMO

OBJECTIVES: Using the new European Working Group on Sarcopenia in Older People (EWGSOP2) criteria, we identified sarcopenic and dynapenic patients in a cohort of predialysis patients with chronic kidney disease (CKD), and evaluated their clinical and laboratory characteristics. METHODS: The study population consisted of 85 (55 men) clinically stable predialysis CKD patients (92.9% in stages 3-5), with a median age of 65.0 (52.5-72.0) y. We classified as sarcopenic the patients with handgrip strength (HGS) and muscle mass both lower than the respective EWGSOP2 cutoff values and as dynapenic those in whom only HGS was less than these reference values. HGS was measured with a hand dynamometer, whereas muscle mass was measured by bioimpedance analysis. Renal function was evaluated as Modification of Diet in Renal Disease estimated glomerular filtration rate. RESULTS: The prevalence of sarcopenia and dynapenia was, respectively, 7.1% and 17.6%. As reported in previous studies, serum albumin and hemoglobin were lower in sarcopenic patients than in patients with preserved muscle mass and strength. However, unlike in these studies, sarcopenia prevalence did not increase with CKD stage, and estimated glomerular filtration rate was similar between groups. Moreover, no difference was identified in any of the aforementioned parameters between dynapenic patients and patients with preserved muscle mass and strength. CONCLUSIONS: The EWGSOP2 criteria identified sarcopenia in CKD with a prevalence similar to previous diagnostic criteria. In addition, they found that dynapenia was highly prevalent. Nevertheless, the EWGSOP2 criteria could be better adapted to CKD patients to improve their ability to detect high-risk sarcopenic and dynapenic patients.


Assuntos
Insuficiência Renal Crônica , Sarcopenia , Idoso , Estudos Transversais , Feminino , Taxa de Filtração Glomerular , Força da Mão , Humanos , Masculino , Pessoa de Meia-Idade , Força Muscular , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/epidemiologia , Sarcopenia/diagnóstico , Sarcopenia/epidemiologia , Sarcopenia/etiologia
13.
Int J Biol Macromol ; 153: 600-607, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32165203

RESUMO

Glucans are complex polysaccharides consisting of repeated units of d-glucose linked by glycosidic bonds. The nutritional contribution in α-glucans is mainly given by starch and glycogen while in ß-glucans by mushrooms, yeasts and whole grains, such as barley and spelt well represented in the Mediterranean Diet. Numerous and extensive studies performed on glucans highlighted their marked anti-tumor, antioxidant and immunomodulatory activity. It has recently been shown that rather than merely being a passive barrier, the intestinal epithelium is an essential modulator of immunity. Indeed, epithelial absorptive enterocytes and mucin secreting goblet cells can produce specific immune modulating factors, driving innate immunity to pathogens as well as preventing autoimmunity. Despite the clear evidence of the effects of glucans on immune system cells, there are only limited data about their effects on immune activity of mucosal intestinal cells strictly related to intestinal barrier integrity. The aim of the study was to evaluate the effects of α and ß glucans, alone or in combination with other substances with antioxidant properties, on reactive oxygen species (ROS) levels, on the expression of ROS-generating enzyme DUOX-2 and of the immune modulating factors Tumor Necrosis Factor (TNF-α), Interleukin 1 ß (IL-1ß) and cyclooxygenase-2 (COX-2) in two intestinal epithelial cells, the enterocyte-like Caco-2 cells and goblet cell-like LS174T. In our research, the experiments were carried out incubating the cells with glucans for 18 h in culture medium containing 0.2% FBS and measuring ROS levels fluorimetrically as dihydrodichlorofluoresce diacetate (DCF-DA) fluorescence, protein levels of DUOX-2 by Western blotting and mRNA levels of, TNF-α, IL-1ß and COX-2 by qRT-PCR. α and ß glucans decreased ROS levels in Caco-2 and LS 174T cells. The expression levels of COX-2, TNF-α, and IL-1ß were also reduced by α- and ß-glucans. Additive effects on the expression of these immune modulating factors were exerted by vitamin C. In Caco-2 cells, the dual oxidase DUOX-2 expression is positively modulated by ROS. Accordingly, in Caco-2 or LS174T cells treated with α and ß-glucans alone or in combination with Vitamin C, the decrease of ROS levels was associated with a reduced expression of DUOX-2. The treatment of cells with the NADPH oxidase (NOX) inhibitor apocynin decrease ROS, DUOX-2, COX-2, TNF-α and IL-1ß levels indicating that NOX dependent ROS regulate the expression of immune modulating factors of intestinal cells. However, the combination of vitamin C, α and ß-glucans with apocynin did not exert an additive effect on COX-2, TNF-α and IL-1ß levels when compared with α-, ß-glucans and Vitamin C alone. The present study showing a modulatory effect of α and ß-glucans on ROS and on the expression of immune modulating factors in intestinal epithelial cells suggests that the assumption of food containing high levels of these substances or dietary supplementation can contribute to normal immunomodulatory function of intestinal barrier.


Assuntos
Enterócitos/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucanos/farmacologia , Células Caliciformes/imunologia , Células CACO-2 , Ciclo-Oxigenase 2/imunologia , Oxidases Duais/imunologia , Enterócitos/citologia , Regulação da Expressão Gênica/imunologia , Células Caliciformes/citologia , Humanos , Interleucina-1beta/imunologia , Fator de Necrose Tumoral alfa/imunologia
15.
Nutr Metab Cardiovasc Dis ; 29(12): 1390-1399, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31668791

RESUMO

BACKGROUND AND AIMS: A progressive decrease in muscle mass until full-blown sarcopenia may occur in patients on peritoneal dialysis (PD) and worsen their life quality and expectancy. Here we investigate the prevalence of obesity and obesity-associated muscle wasting in PD patients. PATIENTS AND METHODS: The study design was observational, cross sectional. Body composition was assessed with BIA and BIVA in 88 PD patients (53.4 ± 13.1 years; 67% male). Patients with obesity and/or with reduced muscle mass were identified using FMI and SM/BW cutoff values, respectively. Inflammatory status was assessed by measuring CRP and fibrinogen blood levels. RESULTS: A total of 44.3% of the patients showed a reduced muscle mass (37.5% moderate and 6.8% severe). The prevalence of obesity was 6.1%, 81.8%, and 100% in patients with normal, moderately, and severely reduced muscle mass, respectively (p < 0.05). Of the total, 15.2% of the patients with normal muscle mass, 18.4% of those with moderately reduced muscle mass, and 66.7% of those with severely reduced muscle mass had diabetes. The prevalence of severe muscle mass loss was higher in those with diabetes than in those without diabetes (22.2% vs. 2.8%, p < 0.05). Patients with obesity-associated muscle wasting showed higher fibrinogen (613.9 ± 155.1 vs. 512.9 ± 159.5 mg/dL, p < 0.05) and CPR (1.4 ± 1.3 vs. 0.6 ± 0.8 mg/dL, p < 0.05) blood concentrations than those with normal body composition. CONCLUSION: Obesity and diabetes were strongly associated with muscle mass loss in our PD patients. It remains to be established whether prevention of obesity with nutritional interventions can halt the occurrence of muscle mass loss in patients on PD.


Assuntos
Falência Renal Crônica/terapia , Obesidade/epidemiologia , Diálise Peritoneal/efeitos adversos , Sarcopenia/epidemiologia , Adulto , Idoso , Biomarcadores/sangue , Composição Corporal , Proteína C-Reativa , Estudos Transversais , Diabetes Mellitus/epidemiologia , Feminino , Fibrinogênio , Humanos , Mediadores da Inflamação/sangue , Itália/epidemiologia , Falência Renal Crônica/diagnóstico , Falência Renal Crônica/epidemiologia , Falência Renal Crônica/fisiopatologia , Masculino , Pessoa de Meia-Idade , Obesidade/sangue , Obesidade/diagnóstico , Obesidade/fisiopatologia , Prevalência , Medição de Risco , Fatores de Risco , Sarcopenia/sangue , Sarcopenia/diagnóstico , Sarcopenia/fisiopatologia
16.
Int J Mol Sci ; 20(15)2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31387214

RESUMO

Sarcopenia is characterized by the progressive loss of skeletal muscle mass and strength. In older people, malnutrition and physical inactivity are often associated with sarcopenia, and, therefore, dietary interventions and exercise must be considered to prevent, delay, or treat it. Among the pathophysiological mechanisms leading to sarcopenia, a key role is played by an increase in reactive oxygen and nitrogen species (ROS/RNS) levels and a decrease in enzymatic antioxidant protection leading to oxidative stress. Many studies have evaluated, in addition to the effects of exercise, the effects of antioxidant dietary supplements in limiting age-related muscle mass and performance, but the data which have been reported are conflicting. In skeletal muscle, ROS/RNS have a dual function: at low levels they increase muscle force and adaptation to exercise, while at high levels they lead to a decline of muscle performance. Controversial results obtained with antioxidant supplementation in older persons could in part reflect the lack of univocal effects of ROS on muscle mass and function. The purpose of this review is to examine the molecular mechanisms underlying the dual effects of ROS in skeletal muscle function and the analysis of literature data on dietary antioxidant supplementation associated with exercise in normal and sarcopenic subjects.


Assuntos
Músculo Esquelético/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Adaptação Fisiológica , Envelhecimento/metabolismo , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Suplementos Nutricionais , Exercício Físico , Humanos , Oxirredução , Espécies Reativas de Nitrogênio/metabolismo , Sarcopenia/etiologia , Sarcopenia/metabolismo , Sarcopenia/fisiopatologia , Sarcopenia/prevenção & controle , Transdução de Sinais
18.
Front Physiol ; 9: 611, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29881358

RESUMO

The constitutive secretion of antioxidant Cu-Zn Superoxide dismutase (SOD1) has been widely demonstrated in many cellular lines. In addition, we showed that as well as the basal SOD1 secretion, this enzyme is also exported through depolarization of excitable cells by high extracellular K concentration. Recent data showed that SOD1 was able to activate muscarinic M1 receptor producing the activation, via phospholipase C, of ERK1-2 and AKT pathways. It is also known that about 20% of familial amyotrophic lateral sclerosis (fALS) is due to mutations in the gene coding for SOD1. The aim of the present research is to evaluate whether, analogously to wild type SOD1 (SOD1wt), the mutated form of SOD1G93A is able to activate ERK1-2 and AKT through muscarinic M1 receptor in SK-N-BE as well as in motoneuron like NSC-34. Our results demonstrated that in NSC-34 and SK-N-BE cells mutated SOD1G93A carried out a more evident activation of ERK1-2 and AKT and a stronger increase of intracellular calcium levels compared to SOD1WT; we also demonstrated that these effects are mediated by the M1 receptor as shown using pirenzepine, a specific M1 inhibitor and the calcium chelator BAPTA. Of note, M1 receptor pathway activation by SOD1G93A, but not by SOD1WT, is associated with both an increase of reactive oxygen species and a cytotoxic effect.

19.
Front Physiol ; 9: 357, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29681865

RESUMO

The main dietary flavonoid quercetin, is known to preserve the integrity of gastrointestinal barrier and to have anti-inflammatory, anti-cancer, anti-fibrotic, and other beneficial properties. Many of the biological effects of quercetin appear to be associated to the modulation of cell signaling pathways, rather than to its antioxidant activity. In spite of the large number of data available on the molecular and cellular mechanisms by which quercetin exerts its biological effects, including protection of intestinal barrier function, there is a lack of data about the role of this substance on the expression and/or the secretion of mucins released by intestinal goblet cells. Here we investigated the effects of quercetin on the secretion and the gene expression of the main intestinal gel-forming mucins, MUC2 and MUC5AC, and the signaling mechanisms underlined, in human intestinal goblet cell-like LS174T. We found that quercetin increases intracellular Ca2+ levels and induces MUC2 and MUC5AC secretion in a Ca2+-dependent manner. Quercetin also induces mRNA levels of both secretory mucins. Quercetin stimulation of LS174T cells increases phosphorylation levels of extracellular signal regulated kinase (ERK)1-2 and protein kinase C (PKC) α and the induction of MUC2 and MUC5AC secretion and mRNA relies on phospholipase C (PLC), PKC, and ERK1-2 signaling pathways since the PLC inhibitor U73122, the PKC inhibitor bisindolylmaleimide (BIM) and the ERK1-2 pathway inhibitor PD98059, all revert the stimulatory effects of quercetin. We also demonstrated that the induction of mucin gene expression by quercetin is not limited to goblet cells. Indeed, quercetin induces mRNA levels of MUC2 and MUC5AC via PKCα/ERK1-2 pathway also in the human intestinal epithelial Caco-2 cells. These data highlight a novel mechanism thereby quercetin, regulating the secretory function of intestinal goblet cells and mucin levels in enterocytes may exert its protective effects on intestinal mucosal barrier.

20.
Front Physiol ; 7: 594, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27965593

RESUMO

The Cu,Zn superoxide dismutase (SOD1) is an ubiquitary cytosolic dimeric carbohydrate free molecule, belonging to a family of isoenzymes involved in the scavenger of superoxide anions. This effect certainly represents the main and well known function ascribed to this enzyme. Here we highlight new aspects of SOD1 physiology that point out some inedited effects of this enzyme in addition to the canonic role of oxygen radical enzymatic dismutation. In the last two decades our research group produced many data obtained in in vitro studies performed in many cellular lines, mainly neuroblastoma SK-N-BE cells, indicating that this enzyme is secreted either constitutively or after depolarization induced by high extracellular K+ concentration. In addition, we gave many experimental evidences showing that SOD1 is able to stimulate, through muscarinic M1 receptor, pathways involving ERK1/2, and AKT activation. These effects are accompanied with an intracellular calcium increase. In the last part of this review we describe researches that link deficient extracellular secretion of mutant SOD1G93A to its intracellular accumulation and toxicity in NSC-34 cells. Alternatively, SOD1G93A toxicity has been attributed to a decrease of Km for H2O2 with consequent OH radical formation. Interestingly, this last inedited effect of SOD1G93A could represent a gain of function that could be involved in the pathogenesis of familial Amyotrophic Lateral Sclerosis (fALS).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...